Multiple Classifier Fusion Using k -Nearest Localized Templates
نویسندگان
چکیده
This paper presents a method for combining classifiers that uses knearest localized templates. The localized templates are estimated from a training set using C-means clustering algorithm, and matched to the decision profile of a new incoming sample by a similarity measure. The sample is assigned to the class which is most frequently represented among the k most similar templates. The appropriate value of k is determined according to the characteristics of the given data set. Experimental results on real and artificial data sets show that the proposed method performs better than the conventional fusion methods.
منابع مشابه
Character Recognition using Ensemble classifier
To improve the accuracy of data classification systems, several techniques using classifier fusion have been suggested. This paper proposed a model of classifier fusion for character recognition problem. The work presented here aims to tackle the disadvantages and benefit of different classifiers with varying feature sets. In particular, this approach proposes the use of statistical procedures ...
متن کاملHand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach
Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. T...
متن کاملUsing measures of similarity and inclusion for multiple classifier fusion by decision templates
Decision templates (DT) are a technique for classifier fusion for continuous-valued individual classifier outputs. The individual outputs considered here sum up to the same value (e.g., statistical classifiers, yielding some estimates of the posterior probabilities for the classes). First, the DT fusion algorithm is explained. Second, we show that two similarity measures (S1 and S2) and two inc...
متن کاملComparative implementation of two fusion schemes for multiple complementary FLIR imagery classifiers
Several classifiers for forward looking infra-red imagery are designed and implemented, and their relative performance is benchmarked on 2545 images belonging to 8 different ship classes, from which 11 attributes are extracted. These are a Bayes classifier, a Dempster–Shafer classifier ensemble in which specialized classifiers are optimized to return a single ship class, a k-nearest neighbor cl...
متن کاملFusion of multiple approximate nearest neighbor classifiers for fast and efficient classification
The nearest neighbor classifier (NNC) is a popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Important factors affecting the efficiency and performance of NNC are (i) memory required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and (iii) due to the curse of dimensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007